EFFECTIVE RIPARIAN CORRIDOR MANAGEMENT TO PROTECT NATURAL SYSTEMS FROM DEVELOPMENT IMPACTS

Ray Tufgar Angela Mick Wolfgang Wolter

Stormwater and Urban Water System Modelling - February 24-25, 2005

Outline

- Riparian Corridor Management
 - what is it
- Need for Corridor Management
 - subwatershed planning
- Corridor Identification, delineation
- Management Tools
- Gaps

Riparian Corridor Management – What is it

- Watershed context
- Form and Function
- Functional Elements

STREAM AND ITS' VALLEY

"A stream is only as healthy as the valley through which it flows"

Hynes (1975)

FIGURE 4-4: IDEA LIZED FLUVIAL SYSTEM

20NE 1 HEADWATERS: Mountain heedwater streams flow swiftly down steep slopes and out a deep Ushaped ve ley. Rapkb and waterfalls are common. ZONE 2 TRANSFER ZONE: Low-elevation streams marge and flow down gantler slopes. The valley broaders and the river begins to meander. ZONE 3 DEPOSITIONAL ZONE: At an even lower elevation a river wanders and meanders slowly acros a broad, nearly fist valley. At its mouth it may divide into many separate channels as it flows across a delta built up of riverborre sedments and into the set.

Form and Function

Elements

- Environmental
- Fluvial Geomorphology/Erosion
 Protection
- Hydraulics/Flood Protection
- Hydrogeology
- Water Quality

Need for Corridor Management

Subwatershed Planning

Evolution

TRADITIONAL MASTER DRAINAGE PLAN

SUBWATERSHED PLANNING

1980		1990	Present.		-Presei
Issues to be addressed			Geomorphology		
~			Terrestrial Habitat		esn
			Ground Water		pand
			Wetlands/ESAs/ANSIs		nd lø
	.		Woodlots		æ al <i>k</i> ate
		Monitoring	Monitoring		ourc
		Enhancement Opportunities	Enhancement Opportunities	UC	res: f a s
		Infiltration	Water Balance	ţţ	ater 35 0
		Water Temperature	Water Temperature	13	o w: larie
		Baseflow maintenance	Baseflow maintenance	60	ch to und
		Fisheries/Aquatio Habitat	Fisheries/Aquatic Habitat	1 T	od e
	Water Quality	Water Quality	Water Quality		app the
	Erosion/Sediment Control	Erosion/Sediment Control	Erosion/Sediment Control		sed sing
Floodplain Management	Floodplain Management	Floodplain Management	Floodplain Management		-bas mtu
Runoff Quantity Control	Runoff Quantity Control	Runoff Quantity Control	Runoff Quantity Control		me
Erosion/Flood Control works	Erosion/Flood Control works	Erosion/Flood Control works	Erosion/Flood Control works		syst
Major/Minor System Design	Major/Minor System Design	Major/Minor System Design	Major/Minor System Design		Eco
Culvert Improvements	Culvert Improvements	Culvert Improvements	Culvert improvements		
p	3	81 1			

Adapted from: MOE and MNR, 1993. Subwatershed Planning

North Oakville Map

Corridor Identification/Delineation

Elements

- Environmental
 - Terrestrial
 - Aquatic
 - Linkages
- Fluvial Geomorphology
 - Planform
 - Erosion Control
 - Drainage Density

- Hydraulics
 - Flow Stages
 - Flood Control
- Hydrogeology
 - Regional
 - Local
- Water Quality
 - Temperature
 - Nutrients
 - Pollutant Reduction

Sample for Oakville North Core 9

NORTH OAKVILLE SUBWATERSHED STUDY

Core Area #9 TRAFALGAR WOODLOTS

Figure 6.3.10

Schematic of the Flood-Pulse Concept

Figure 1.26: Schematic of the flood-pulse concept. A vertically exaggerated section of a floodplain in five snapshots of an annual hydrological cycle. The left column describes the movement of nutrients. The right column describes typical life history traits of fish. Source: Bayley, Bioscience, vol. 45, p.154, March 1995. ©1995 American Institute of Biological Science.

Corridor Identification/Delineation

Elements

- Environmental
 - Terrestrial
 - Aquatic
 - Linkages
- Fluvial Geomorphology
 - Planform
 - Erosion Control
 - Drainage Density

- Hydraulics
 - Flow Stages
 - Flood Control
- Hydrogeology
 - Regional
 - Local
- Water Quality
 - Temperature
 - Nutrients
 - Pollutant Reduction

Conceptual Belt Width

FISH HABITAT IN RIVERS IS DRIVEN BY HYDROLOGY, GEOMORPHOLOGY AND HYDROGEOLOGY

Salmonid reproduction occurs at the tail of a pool, head of a riffle where sorting after spring floods is the highest. This critical habitat is lacking from traditional river engineering designs.

Drainage Density

Table 1 Drainage Densities Based on Existing Conditions and OBMs							
Subcatchment	Subdrainage	Protected Drainage		Potential Drainage		Drainage	
ID	Area	Density		Density		Density based on	
	(km²)	(red and blue streams)		(red, blue and green		1:10,000 OBMs	
		(km/km²)		streams)		(<i>km/km</i> ²)	
				(<i>km/km</i> ²)			
EM1	1.88	1.05			1.05	1.47	
Table 2 Drainage Densities Targets for the North Oakville Subwatersheds							
Subcatchment	Drainage	Drainage	Drainage		Surplus Stream	Does the	
ID	Density	Deficit ¹	Def	<i>icit²</i> Length ³		subcatchment meet	
	Target	Red and blue	Red, blue		Red and blue	the target?	
	Minimum	streams	and green		streams		
	(<i>km/km</i> ²)	(km)	streams		(km)		
			(ki	m)			
EM1	1.29	0.45	0.4	45		No – use surplus	

To determine Drainage Deficit red and blue streams (in km):

(Drainage Density Target Minimum- Protected Drainage Density) X Subdrainage Area

Example – EM1: Drainage Density (red and blue streams) for EM1 = (1.29 km/km2 – 1.05 km/km2) X 1.88 km2 = 0.45 km

Corridor Identification/Delineation

Elements

- Environmental
 - Terrestrial
 - Aquatic
 - Linkages
- Fluvial Geomorphology
 - Planform
 - Erosion Control
 - Drainage Density

- Hydraulics
 - Flow Stages
 - Flood Control
- Hydrogeology
 - Regional
 - Local
- Water Quality
 - Temperature
 - Nutrients
 - Pollutant Reduction

Learning to Speak the Same Language – Linking Habitat to Physical Features and Processes

All stages are important for the creation and maintenance of habitat

FOR NATURAL CHANNEL/VALLEY MANAGEMENT

Corridor Identification/Delineation

Elements

- Environmental
 - Terrestrial
 - Aquatic
 - Linkages
- Fluvial Geomorphology
 - Planform
 - Erosion Control
 - Drainage Density

- Hydraulics
 - Flow Stages
 - Flood Control
- Hydrogeology
 - Regional
 - Local
- Water Quality
 - Temperature
 - Nutrients
 - Pollutant Reduction

FIGURE 4-4: IDEA LIZED FLUVIAL SYSTEM

Zower F Headbwaress: Mountain headwater streams flow swiftly down steep slop es and arta deep V-shaped willey. Rapids and waterfalls are common. 20NE 2 TRANSFER 20NE: Low-elevation streams marge and flow down gentler slopes. The valley broaders and the tiver begins to meander.

20NE 3 DEPOSITIONAL ZONE: At an avan lower elevation a river wanders and meanders slowly acros a broad, nearly flat valley. At its mouth it may divide into many separate channels as it flows across a delta built up of twaborne sediments and into the sea.

Natural Heritage and Stormwater Management

Corridor Identification/Delineation

Elements

- Environmental
 - Terrestrial
 - Aquatic
 - Linkages
- Fluvial Geomorphology
 - Planform
 - Erosion Control
 - Drainage Density

- Hydraulics
 - Flow Stages
 - Flood Control
- Hydrogeology
 - Regional
 - Local
- Water Quality
 - Temperature
 - Nutrients
 - Pollutant Reduction

Max/Min Temperatures and Habitat Conditions

Torrance Ck Temperature Profile

Ultimate Control versus Current

Ultimate Control — Current Condition

Need for Appropriate Legislation

- Hazard Lands, PPS
- Research Needs
 - Drainage Density
 - Hydrogeologic Functions
 - Biological Functions

Stream Classification -Example

- Physical Stream Characteristics
 - Overall Geormorphological Classification
 - Relative Hydrologic Function
 - Hydrogeologic Contribution to Stream Health
- Terrestrial/Wetland Habitat
- Aquatic Habitat Characterization

Physical Stream Characteristics

- Overall Geomorphic Classification
 - Stream bed type
 - Bank conditions
 - Bed morphology
 - Presence/absence of barriers
 - Constraints and opportunities
 - Sediment supply/transport
 - Channel disturbance
 - Stream Sensitivity
 - Rehabilitation Potential

Physical Stream Characteristics

Relative Hydrologic Function

- Ability to provide water quality improvement
- Valley present
- Hydraulic conveyance conditions (ability to detain/store streamflow)
- Linkage to headwater functions

Physical Stream Characteristics

 Hydrogeologic Contribution to Stream Health

- Flow type (flowing or not flowing)
- Groundwater discharge observations
- Interpreted groundwater contribution to stream flow

Habitat Unit Characteristics

- Presence of Designate Area (ANSI, ESA, PSW)
- Size Total, beyond 100, 200 and 300 m from edge
- Part of Riparian/Drainage System
- Presence of Rare Species
- Number of Native Plants and Wildlife
- Presence of Rare Vegetation Community
- Number of Vegetation Types
- Presence of 'Mature' Vegetation Type
- Character of Surrounding Habitats/Land use etc.

Aquatic Habitat Characteristics

- Rarity of Habitat
- Sensitivity to Development
- Function of Habitat in Sustaining Fisheries
- Groundwater Discharge
- Existing Level of Habitat Degradation and Modification
- Habitat Supports VTE Species or Species of concern
- Cool vs. Warm Water Status

Stream Classification -Example

SUB-CATCHMENT AREA	STREAM REACH/ HABITAT UNIT (HU)	AQUATIC HABITAT CATEGORIZATION	OVERALL GEOMORPHOLOGY CLASSIFICATION	RELATIVE HYDROLOGIC FUNCTION	HYDROGEOLOGIC CONTRIBUTION TO STREAM HEALTH (FISHERIES, WETLANDS_ETC)	TERRESTRIAL/WETLAND HABITAT	CONTEXTUAL RATIONALE	OVERALL CLASSIFICATION	Potential for Rehabilitation
JOSHUA'S CREEK	JOSHUA'S CREEK								
JC15	JC-1	Important Habitat	HIGH	HIGH	LOW	manicured golf course		LEVEL 1	N/A

North Oakville Map

UNDERSTANDING STREAM SYSTEMS 1.0 Legislative and Policy Framework

FIGURE 1-1a

The focus of this section is to demonstrate the relationship of the stream corridor management approach within the context of the existing legal framework.

The rationale for this approach is to demonstrate that existing policy and legislation provides sufficient guidance to proponents interested in achieving fully functional management objectives in stream corridor works.

List of abbreviations

DFO – Department of Risheries and Oceans (Federal: Canada)

MMAH – Ministry of Municipal Affairs and Housing (Provindal: Ontario)

MNR – Ministry of Natural Resources (Provindal: Onterio)

MOE – Ministry of the Environment (Provindal: Ontario)

OMAFRA – Ontario Ministry of Agriculture, Food, and Rutal Affairs (Provindal: Ontario)

NATURAL CHANNEL SYSTEMS + ADAPTIVE MANAGEMENT OF STREAM CORRIDORS IN ONTABIO

UNDERSTANDING STREAM SYSTEMS 1.0 Legislative and Policy Framework

Potential extent of legislative authority:

generally; the area indicated by the darker arrows reflects the greatest applicability

